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In a previous installment, I did some experiments to find the Young's Modulus and failure stress
for balsa as a function of density. Now that we have these material properties in hand, we can
use beam bending equations to investigate the quandary that has troubled modelers since the
dawn of indoor free flight: “what leading edge won’t break when my plane hits a basketball
hoop?”

There are lots of ways a free flight model can break indoors. One common scenario in my
personal experience has been that the leading edge busts in between two wing ribs. Let’s look
at a section of the leading edge between two wing ribs by thinking about it like a beam fixed by
pin joints. The beam corresponds to the leading edge. And the pin joints correspond to where
the LE is glued to the front of the wing ribs.

Before it breaks, the leading edge acts like a spring because it deforms more the harder you
push on it (the deformation is the distance that the leading edge has been pushed in). For
“small” deformations, the deformation is proportional to the force pushing on the LE, and the
proportion is called the effective spring constant. We can look up the formula for the effective
spring constant of a beam loaded this way in a beam deflection table.

𝑃 = 𝑘
𝑒𝑓𝑓

δ 𝑘
𝑒𝑓𝑓

= 48𝐸𝐼

𝐿3

The equations for deflection of a spring and the effective spring constant for a beam with
pin joins at each end and a load in the center. P is the force, is the effective spring𝑘

𝑒𝑓𝑓

constant, is the deformation, E is the Young’s Modulus, I is the area moment of inertia,δ
and L is the length (which corresponds to the rib spacing).

The area moment of inertia depends on the cross section dimensions of your LE stick. The
formula for area moment of inertia of a rectangle is shown below. Formulas exist for other
shapes. I tilt all my square leading edges at 45 degrees to get a sharper LE, and it is of note that
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the area moment of inertia for a square stick tilted 45 degrees winds up being almost the same
as the un-tilted stick.

𝐼 = 1
12 ℎ𝑏3

Formula for area moment of inertia, I, of a rectangular leading edge. h is the height of the
leading edge, and b is the width of the leading edge.

As the LE deforms, it absorbs energy, but the stick cannot absorb any more energy once the
stress within it reaches the failure stress (which we found earlier in part 1 as a material property
of the balsa). If the airplane were to crash in a way that forced the stick to absorb any more
energy, it would break. The energy absorbed by a spring depends on the spring constant and
the deformation.

𝑈
𝑠𝑝𝑟𝑖𝑛𝑔

= 1
2 𝑘

𝑒𝑓𝑓
δ2

Equation for energy contained in a spring. K is the effective spring constant and is theδ
deformation of the spring.

Our goal is to figure out what crash speed imparts that much energy into the leading edge. To
find the energy, we need to know the displacement. To calculate the displacement, we need to
know the force. Using the equation that relates force and stress within a beam, we can find the
force required to create a stress that breaks the stick.

𝑃 =
4σ

𝑓𝑎𝑖𝑙
𝐼

𝐿𝑦
Equation for force (P) required to break the leading edge. is the failure stress, I is theσ

𝑓𝑎𝑖𝑙

area moment of inertia, L is the rib spacing (i.e. beam length), and y is half the width of the
leading edge.

We can solve for the deformation at the point of failure by dividing the force by the effective
spring constant. Plugging that into the energy equation gives the energy required to break the
leading edge. This is the same as the energy absorbed by the leading edge at the point of
failure.

𝑈
𝑠𝑝𝑟𝑖𝑛𝑔

= 1
2 (

𝐼σ
𝑓𝑎𝑖𝑙

2𝐿

3𝐸𝑦2 )
Equation for energy absorbed by the leading edge at point of failure. I is the area moment
of inertia, is the failure stress, L is the rib spacing (i.e. beam length), E is the Young’sσ

𝑓𝑎𝑖𝑙

Modulus, and y is half the width of the leading edge.

When a model crashes into a basketball hoop, it stops moving forward, so the kinetic energy
from the model’s motion in flight is converted into other forms of energy. Some of this energy is
absorbed by the leading edge, but not all of it. The model usually rotates about the point of
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contact when it hits a basketball hoop, and this rotation absorbs some of the kinetic energy by
turning it into rotational energy.

The rotation is caused because the force
stopping the model is exerted a distance away
from the center of gravity. The energy absorbed
by the rotation depends on the force, the angle of
rotation, and where the impact occurs along the
wing. Unfortunately, this is a point where some
guesswork enters the equation. Based on my
memory of indoor ships crashing, the angle of
rotation seems often to be about 60 degrees.
This value seems to give reasonable final
answers, so let’s stick with it for now. We derived the formula for breaking force earlier, so let’s
substitute it into the equation for rotational energy ( . The point of contact with𝑈 = 𝑃 × 𝑟 × θ)
the basketball hoop is often a matter of chance, so let’s think of it as a parameter (r).

𝑈
𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙

= 𝑃 × 𝑟 × θ =
4σ

𝑓𝑎𝑖𝑙
𝐼𝑟θ

𝐿𝑦
Equation for rotational energy. P is the force; r is the distance from the point of impact to the
center line; is the angle the plane rotates before stopping; is the failure stress; I is theθ σ

𝑓𝑎𝑖𝑙

area moment of inertia; L is the rib spacing (i.e. beam length); and y is half the width of the
leading edge.

Notice that if the point of contact is near the wing tip (large r), the rotation absorbs lots of energy
(so less energy goes into the deformation of the LE). If the point of contact is near the centerline
(r is almost 0), the rotation absorbs very little energy, and so more energy goes into deforming
the LE. This correlates pretty well with reality. Post-crash inspections of my models have found
the inner regions of the leading edge (just outside the prop arc) break more often than out at the
tips. Inversely, when one of my models makes a glancing blow, it gets away with minimal
damage.

At this point, we have formulae for the maximum energy absorbed by the leading edge before it
breaks, and the energy absorbed by the rotation of the model. If all other sources of energy
absorption are negligible, then the speed at which the kinetic energy of the model just before
impact equals this total energy absorbed during the crash is the critical crash speed that busts
the leading edge.

𝐾𝐸 = 𝑈
𝑠𝑝𝑟𝑖𝑛𝑔

+ 𝑈
𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙

= 1
2 𝑚𝑣2 = 1

2 (
𝐼σ

𝑓𝑎𝑖𝑙
2𝐿

3𝐸𝑦2 ) +
4σ

𝑓𝑎𝑖𝑙
𝐼𝑟θ

𝐿𝑦
KE is the kinetic energy before impact; is the energy absorbed by the spring (LE);𝑈

𝑠𝑝𝑟𝑖𝑛𝑔

is the energy absorbed by rotation; m is the mass of the model; v is the speed𝑈
𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙

before impact; I is the area moment of inertia; is the failure stress; L is the rib spacingσ
𝑓𝑎𝑖𝑙

(i.e. beam length); E is the Young’s Modulus; y is half the width of the leading edge; r is the
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distance from the point of impact on the LE to the centerline of the plane; and is the angleθ
the plane rotates before stopping.

Rearranging this equation and solving for speed gives the following equation for the impact
speed that will break the leading edge as a function of known attributes of the LE stick and the
plane. This formula can lead us to useful conclusions about how to choose thickness and
density for a LE that is less likely to break at a given speed.

𝑣 =  2
𝑚 [ 1

2 (
𝐼σ

𝑓𝑎𝑖𝑙
2𝐿

3𝐸𝑦2 ) +
4σ

𝑓𝑎𝑖𝑙
𝐼𝑟θ

𝐿𝑦 ]
Equation for critical impact speed that breaks the LE. m is the mass of the model; I is the
area moment of inertia; is the failure stress; L is the rib spacing (i.e. beam length); E isσ

𝑓𝑎𝑖𝑙

the Young’s Modulus; y is half the width of the leading edge; r is the distance from the point
of impact to the center line; and is the angle the plane rotates before stoppingθ

Enough math. Time for results!

My dime scale Hawker Hurricane weighs about 15 grams, and has a 1/16th inch square, 18
lb/ft^3 leading edge. The rib spacing is about 1.75”. The prop diameter is 6”, so a worst-case
scenario impact location is 3” out from the centerline (just outside the prop arc). The above
formula calculates a critical crash speed of 12 miles per hour.1 Under 12 miles per hour, we
would not expect the LE to break when it hits the basketball hoop.

Based on a video taken of my Hurricane at an indoor event, it flies at about 10 miles per hour,
so the critical crash speed is just above flight speed. This makes sense based on my
observations of that plane. It has crashed into basketball hoops when circling and made out with
little damage, but the LE has snapped on the (not infrequent) occasions when the plane hit the
hoop rim at a higher speed because it accelerated downward after hitting an obstacle in the
rafters.

I have a 16” P-51 that weighs 20 grams with 1.25” rib spacing. I built it with a ⅛” square, 8
lb/ft^3 leading edge, and it has the same 6” prop diameter, so the worst-case impact is still at 3”
from the centerline. The formula calculates a critical crash speed of 21 miles per hour, so the
leading edge should be safe below that speed.

This also makes sense compared to observations, since my P-51 has suffered almost no
leading edge injuries indoors despite flying a little faster than my Hurricane. The extra strength
of the LE of my P-51 came with the penalty that the stick weighs twice as much as the LE for
the Hurricane.

Now for the question we’ve all been waiting for: how to make a stronger leading edge without
increasing the weight. As noted above, my Hawker Hurricane has an 18 lb/ft^3 1/16” LE. A 3/32”

1 For a step by step walkthrough of this calculation, see appendix A
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square 8 lb/ft^3 stick would weigh exactly the same, as would a 1/16” x ⅛” 9 lb/ft^3 stick. So
which is stronger? If we substitute the 3/32” LE in for the 1/16” one in my Hurricane, the critical
crash speed increases from 12 mph to 14mph. If we use the 1/16” x ⅛” stick (⅛” dimension
running chordwise), the critical speed increases to 16 miles per hour. For the same weight,
we’ve made the LE strong enough to withstand a 33% higher crash speed!

The 1/16” x ⅛” stick gets its extra strength from its increased area moment of inertia, and this
increase is more than enough to make up for the decreased Young’s Modulus and failure stress
that result from its decreased density.

So there you have it, skysters. We now have a scientifically based guideline for choosing the
wood for the leading edge that can withstand a higher crash speed with no weight penalty.
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Appendix A: Formula Walkthrough
In this appendix, I’ll go step by step as I plug in numbers to find the critical crash speed for my
Dime Scale Hawker Hurricane. Note: for ease of computation, I’m going to do everything in
metric units and convert back to mph at the end.

Here’s the final formula:

𝑣 =  2
𝑚 [ 1

2 (
𝐼σ

𝑓𝑎𝑖𝑙
2𝐿

3𝐸𝑦2 ) +
4σ

𝑓𝑎𝑖𝑙
𝐼𝑟θ

𝐿𝑦 ]
Equation for critical impact speed that breaks the LE. m is the mass of the model; I is the
area moment of inertia; is the failure stress; L is the rib spacing (i.e. beam length); E isσ

𝑓𝑎𝑖𝑙

the Young’s Modulus; y is half the width of the leading edge; r is the distance from the point
of impact to the center line; and is the angle the plane rotates before stoppingθ

The first thing we’re going to need is the mass. My dimer Hurricane weighs about 15 grams, so
that means a mass of m = 0.015 kg. While I’ve got the model in front of me, I’m going to
measure the rib spacing, which comes out to L = 1.75” = 0.04445 meters.

The next thing we’ll need is the area moment of inertia, . The LE of my hurricane is a 1/16”𝐼
(0.001588m) square stick, so we can use the formula for the area moment of inertia of a
rectangle. Note that I converted to meters.

𝐼 =  ℎ𝑏3

12 = 0.001588×0.0015883

12 = 5. 29 × 10−13 [𝑚4]

We’ll also need the failure stress. In another article, I came up with correlations to calculate
failure stress and Young’s Modulus based on density. The density of the LE is 18 lb/ft^3.

𝐸 [𝐺𝑃𝑎] = 0. 388 × 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 [𝑙𝑏/𝑓𝑡3] − 1. 71 = 0. 388 × 18 − 1. 71

= 5. 27 [𝐺𝑃𝑎] =  5. 27 × 109[𝑃𝑎]

σ
𝑓𝑎𝑖𝑙

[𝑀𝑃𝑎] = 2. 77 × 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 [𝑙𝑏/𝑓𝑡3] − 4. 28 = 2. 77 × 18 − 4. 28

= 45. 6 [𝑀𝑃𝑎] = 4. 56 × 107[𝑃𝑎]

Since the LE is a 1/16” square stick, y = 0.5 * 1/16” = 1/32” = 0.00079375 meters.

The prop diameter is 6”, so a worst-case scenario impact location is 3” out from the centerline
(just outside the prop arc), so let’s use r = 3” = 0.0762 meters.

Based on my memory of indoor ships crashing, the angle of rotation seems often to be about 60
degrees. The angle, , has to be in radians, and 60 degrees is almost 1 radian, so I’ll use = 1θ θ
radian.

That’s all the numbers gathered. Time to plug in:

𝑣 =  2
0.015 [ 1

2 ( 5.29×10−13×(4.56×107)2×0.04445 

3×5.27×109×0.000793752 ) + 4×4.56×107×5.29×10−13 ×0.0762×1
 0.04445×0.00079375 ] = 5. 3 𝑚

𝑠 = 12 𝑚𝑝ℎ
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